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Abstract

Let (Γ′, ψ), (Γ, π) be pairs consisting of a cofinite Kleinian group (discrete subgroup
of SL2(C)) and a finite dimensional unitary representation of the group. Suppose
that Γ and Γ′ are commensurable and that π and ψ are related by induction of
representations. We show that each term in the Selberg trace formula associated to
(Γ′, ψ) is equal to the corresponding term in the trace formula associated to (Γ, π).
Our result generalizes certain methods and results of Venkov and Zograf in [20],
[21], and Friedman in [9]. As a corollary of our result on the Selberg trace formula,
we obtain a generalization of the previously known cases of Artin Formalism of
Selberg zeta functions. Our approach to the problem lies much closer to that of
Jorgenson and Lang in [12] (where certain higher-dimensional co-compact cases are
treated), as opposed to [21] and [9]. This is because we show the equality of the
sections of the vector bundles on taking a ‘partial trace’ of each, i.e., before tracing
down to functions and taking the integral over the diagonal in Γ\G × Γ\G, as
one eventually does in the trace formula. In addition to giving a more transparent
proof that allows one to dispense with a normality assumption found in previous
treatments, our method seems to have better prospects for unifying the various
aspects of ‘inductivity’ of related spectral objects, such as the Selberg zeta function
and the determinant of the scattering matrix. The method appears to generalize to
certain higher dimensional situations.
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1 Introduction

Generalities. Let Hn be the upper half space of dimension n. This can be
realized as the quotient H = G/K, where G = SO(n, 1) and K = SO(n).

Let Γ a discrete subgroup of isometries such that Γ\Hn has finite volume (with
respect to the G-invariant measure).

The datum of a finite dimensional unitary representation (π,W ) of Γ is equiva-
lent to the datum of a flat unitary vector bundleHπ over the locally symmetric
space XΓ = Γ\H. The bundle is obtained as

Hπ = (H×W )/ ∼,

with ∼ the equivalence relation defined in (8), below.

Associated to such a flat vector bundle (or to such a representation), one can
associate the following objects

(a) L2(Γ\H, π) the Hilbert space of L2 sections of Hπ. Also, the Laplace oper-
ator ∆ acting on L2(Γ\H, π) (or more precisely a certain dense subspace of
the L2 subpsace). For an appropriate definition of L2, as well as the exten-
sion of ∆ (to a self-adjoint unbounded operator), we refer to Chapter 4 of
[6] and Chapter 4 (p. 17) of [22].

(b) Selberg zeta function associated to the data (Γ, π), defined for the case of
n = 3, in the range of convergence Re(s) > 1, as

ZΓ,π(s) =
∏

{P0}∈R

dimW∏
j=1

∏
l,k≥0

c(P0,j,l,k)=1

(
1− tjλ(P0)

−2kλ(P0)
−2l
N(P0)

−s−1
)
,

where
· P0 ranges over R, a maximal reduced system (in the sense of §5.4 of [6]) of

Γ-conjugacy classes of primitive hyperbolic elements of Γ, and the torsion
part of the centralizer of P0 is generated by the elliptic element EP0 .

· λ(P0) is the unique eigenvalue of P0 satisfying |λ(P0)| > 1.
· N(P0) := |λ(P0)|2.
· t1, . . . , tn denote the eigenvalues of π(P0).
· c(P0, j, l, k) := t′jζ(P0)

2lζ(P0)
−2k, where the t′j are the eigenvalues of

π(EP0) and ζ(P0) is an eigenvalue of EP0 itself.
In this definition we follow Friedman ([8]), who is generalizing [6] and [22],
and ultimately, [18].

The Selberg zeta function, originally introduced by Selberg in [18], and
its relation to the spectral theory of ∆ on L2 is the object of numerous
studies. In particular, the analytic continuation of the Selberg zeta function
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was studied in Chapter 7 of [22] and [8]. The main fact that will be vital to
our argument is that, for Res > 1,

d logZΓ,π(s)/ds =
∑
{P}Γ

trWπ(P ) logNP0

m(P )|λ(P )− λ(P )−1|2
N(P )−s, (1)

where
· P in the summation ranges over a set of representatives of the conjugacy

classes of all (not just primitive) hyperbolic elements in Γ.
· P0 is a primitive element of Γ so that P ∈ 〈P0〉, the group generated by
P0.

· m(P ) is the order of the torsion part of the element EP , that is the order
of the torsion part of the centralizer of P .

The Problem. In [21], [20], and Chapter 7 of [19], Venkov and Zograf de-
veloped the so-called Artin formalism for the Selberg zeta function. Namely,
Venkov and Zograf proved the following inductivity result,

Theorem 1 Let Γ′ ⊂ Γ a subgroup of finite index of Γ, and ψ a finite dimen-
sional representation of Γ′. Then, for π = IndΓ

Γ′ψ, the following is true:

ZΓ′,ψ(s) = ZΓ,π(s).

Originally covering only the case of n = 2, that is finite volume surfaces Γ\H,
Venkov’s theorem has been recently extended to the case of n = 3 but not in
complete generality. This paper extends Theorem 1 to the case of n = 3 in
complete generality.

More precisely, in [9], Friedman proved Theorem 1 in the case of n = 3,
but under the additional assumption that Γ′ is normal in Γ. We remove the
normality assumption and prove Theorem 1 in the case of n = 3 for any
pair (Γ′,Γ) such that Γ′ has finite index in Γ. In an obvious way, this result
allows us to relate the Selberg zeta functions associated to any pair (Γ,Γ′) of
commensurable Kleinian groups (the term commensurable meaning that Γ∩Γ′

has finite index in both Γ and Γ′).

Of equal or perhaps greater significance than the generalization, per se, of The-
orem 1 in this paper is the method we use to obtain that result. The method
differs from that used by our predecessors Venkov, Zograf, and Friedman, and
instead follows a suggestion of [12]. What we mean by this is that we show the
equality of the ‘partial traces’ of certain partially periodized kernels appearing
in the trace formula, rather than the ‘full trace’, i.e., the (‘hyperbolic’) term
in the trace formula that gives the Selberg zeta function directly. For any n,
once the ‘partial traces’ are shown to be equal, the result Theorem 1 follows
directly as an ‘image’ of this equality under a further trace operation. We be-
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lieve our method is valuable for two reasons. First, the equality of the partial
traces that we establish generalizes to each of the pairs of terms entering into
the respective ‘pre-trace formulas’ (i.e., preliminary form of the trace formula
before explicit calculation of the integrals). Thus our method exhibits a struc-
tural reason and broader context for the inductivity result of the Selberg zeta
function. Second, comparing the partial traces of the hyperbolically periodized
kernels, rather than their full traces, seems to make the proof more transpar-
ent, and apparently eliminates the need for invoking unnecessary assumptions
(such as normality) to make the calculations more manageable.

The structure of the paper is as follows. In §2, we describe the setup and basic
notions. In particular, we define the key notion of an inductive pair of sections,
which allows us to predict when the trace of certain integral kernels will be
equal, before explicitly computing either trace. In §3—a review of material
found, e.g., in [20]—we introduce the notion of Laplacian ∆ appropriate to
the function spaces we are working with and a map T between the function
spaces commuting with ∆. The commutation relation implies that T identifies
the discrete spectra of the Laplacians of the respective spaces. In §4, we study
the action of T on the Eisenstein series and Eisenstein kernels, and hence on
the continuous spectrum. In §5, we review the main facts from the theory
of the Selberg trace formula, especially the convergence of the regularized
integral ‘over the diagonal’, in so far as these are required in order to show
that each of the (regularized) terms, in the case of a non-compact quotient,
actually have convergent traces. In §6, we show that each of the ‘pairs’ of
corresponding sections, whose trace is to be computed in the trace formulas
for Γ, Γ′, indeed form an inductive pair of sections (in the sense defined in §2),
and we use the previously mentioned results to prove that each of the pairs of
corresponding terms in the respective trace formulas are equal. The remainder
of the section is devoted to three closely related applications. When we take
a specific kernel, called the Green’s kernel, and focus on the special case of Ω-
hyperbolic elements, we obtain a short proof of the Artin formalism, Theorem
1, as explained in [4]. When we take a general kernel which satisfies certain
analytic conditions of Selberg, we obtain the equality of each of the pairs of
corresponding ‘orbital integrals’ in the trace formulas of Γ, Γ′. Finally, when
we take a certain kernel of this type, called the heat kernel, we obtain from
the hyperbolic contribution to the trace formula a function whose integral
transform is, roughly speaking, the Selberg zeta function, The choice of the
heat kernel as ‘test kernel’ allows us to unify the two previous applications
under one perspective. The remaining two sections, §7 and §8, are devoted
respectively to a ‘computational’ example of the newly generalized Theorem
1 having particular interest, and to a brief discussion on the prospects for
extensions to higher dimensions, this discussion being in some ways motivated
by the example of §7.

Acknowledgements. The first-named author thanks the Center for Advanced
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Studies in Mathematics at Ben Gurion University of the Negev for providing
support during the period when most of the work for this project was done. He
also thanks Johns Hopkins University for hospitality during several week-long
visits. Mr. Tony Petrello provided additional support for travel.

This paper owes a great debt to the work of Jay Jorgenson and Serge Lang on
the heat kernel and its applications to the theory of automorphic functions.
The first-named author was introduced to their project during his PhD thesis
work, for which Serge Lang served as advisor. He hopes that the results of this
paper will serve as a fitting tribute to the vision of Serge Lang in this subject
and a further illustration of the power of the heat kernel methods that Lang
did so much to promote in the last 15 years of his career.

2 Basic Notions: measures, discrete subgroups, representations,
and vector bundles.

Setup. From now until §7, all of the following notations and notions will be
fixed.

• G = SL(2,C), K = SU(2).
• H = H3 = {z = x + jy | x = x1 + x2i ∈ C, y > 0}, acted upon by G by

fractional linear transformations.
• dz2 is the fixed G-invariant metric and µ is the fixed G-invariant measure

on H given by

dz2 =
dx2 + dy2

y2
, dµ =

dx1dx2dy

y3
.

• Γ, Γ′ are lattices, i.e. Kleinian groups of finite covolume, each containing
{±I2}.

• Γ′ is a subgroup of Γ, and the index [Γ : Γ′] = n.
• Depending on the context, µ may denote the (quotient) hyperbolic measure

on either Γ\H or Γ′\H, so that, in particular,

µ(Γ′\H) = nµ(Γ\H).

• P1(C) = ∂H is the boundary of H, with

H = H ∪ ∂H.

• For a ∈ H, Γa is the stabilizer of a in Γ, and for a ∈ P1(C), ΓUa is the group
of unipotent elements in Γa.

For purposes of many definitions Γ and Γ′ are on an equal footing, and we will
not take the time to restate definitions for Γ′ (e.g., of Γ′a) when it is obvious
how to do so.
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Cusps and Coset representatives. We begin with

Definition 2 A point a ∈ P1(C) is called a cusp of Γ precisely when ΓUa
contains a free abelian group of rank 2. The set of cusps of Γ will be denoted
Cusp(Γ). A collection of Γ-inequivalent cusps will be denoted by C(Γ). We
denote the (finite) cardinality |C(Γ)| by h(Γ).

By Proposition 2.3.7 of [6], a consequence of ‘Shimizu’s Lemma’, Theorem
2.3.1 (of [6]), the condition that ΓUa contains a free abelian group of rank 2 is
equivalent to the condition ΓUa 6= {I2}. The condition |C(Γ)| < ∞ is proved
in Proposition 2.3.8 of [6].

Lemma 3 In the above setup,

(a) We have Cusps(Γ′) ⊆ Cusps(Γ).
(b) For any choice of C(Γ) ⊆ Cusps(Γ), or any choice of C(Γ′) ⊆ Cusps(Γ′),

we can select the other representative set so that

C(Γ) ⊆ C(Γ′).

Proof. For (a), note that for any a ∈ P1(C), the index of Γ′a
U in ΓUa is at

most n < ∞. Therefore, when ΓUa is free abelian of rank 2, Γ′a
U must be free

abelian of rank two as well. Part (b) is clear from the fact that a Γ-orbit in
Cusps(Γ) splits into finitely many Γ′-orbits (at most n such). 2

We will denote the subset of C(Γ′) consisting of cusps which are Γ-equivalent
to a given a ∈ C(Γ) by Ca(Γ

′). Clearly, we have the partition

C(Γ′) =
⋃

a∈C(Γ)

· Ca(Γ
′).

Our convention is always to take a as an element of Ca(Γ
′), and to put a first

in any ordering of the elements of Ca(Γ
′). We set

ha(Γ
′) = |Ca(Γ′)|.

In homage to the situation of Galois theory, with which a strong analogy
will emerge in the course of the paper, we will usually denote the situation
b ∈ Ca(Γ

′) by writing b|a. In addition we will sometimes have occasion to
apply this notation to the cusps themselves. Naturally, when applied to cusps
b|a rather than inequivalent representatives of the cusps,

b|a means that b ∈ Cusps(Γ′), a ∈ Cusps(Γ) and b is Γ-equivalent to a.
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From now on, for b|a, we fix σab ∈ Γ such that

σaba = b.

Definition 4 We have a natural concept of the width nb of b ∈ Cusps(Γ′),
given by setting

nb = [Γb : Γ′b].

Clearly nb depends only on the Γ′-equivalence class of b, so we may speak
unambiguously of nb for the class of b ∈ C(Γ′).

The next statement, Proposition 5, says that the coset representatives for
Γ′\Γ, can be chosen to be “consistent” in a certain precise sense with a choice
of cusp a ∈ Cusp(Γ) and a choice of representatives of the Γ-equivalent cusps
Ca(Γ

′).

Proposition 5 Let a ∈ C(Γ). For b|a, let

{βbj | 1 ≤ j ≤ nb}

be any chosen representatives for the cosets of Γ′b\Γb. Then we have the disjoint
decomposition

Γ =
⋃
b|a

nb⋃
j=1

Γ′βbjσab. (2)

Where doing so improves readability, we will write the coset representatives
βbjσab in (2) more simply as {αi}, with i ranging from 1 to n.

Corollary 6 For a ∈ C(Γ), we have∑
b|a
nb = n.

Proposition 5 is a direct application of the more general Proposition 29, whose
proof is not difficult but somewhat tedious. We place the proof of both propo-
sitions in the Appendix so as not interrupt the main flow of the argument.

Unitary Representations. Let (ψ, V ) denote a finite-dimensional (unitary)
representation of Γ′. Let 〈·, ·〉 denote the inner product of V giving rise to the
norm | · |V . The assumption that (π, V ) is unitary means that for every γ′ ∈ Γ′,
the operator ψ(γ′) preserves 〈·, ·〉 and | · |.

There is an induced representation of (indΓ
Γ′ψ,W ) of ψ on the space of func-

tions.

W = {φ : Γ → V | φ(γg) = ψ(γ)φ(g) for all γ ∈ Γ′, g ∈ Γ} (3)
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transforming by ψ under Γ′ on the left. The larger group Γ acts by right-
translation on W . Henceforth, whenever (ψ, V ) is our fixed representation of
Γ′, we will use (π,W ) to denote (indΓ

Γ′ ,W ). Now consider the representation
(π, V n) of Γ on V n defined by setting

π(γ) ∈ End(V n) with coefficient π(γ)ij = ψ̃(αiγα
−1
j ). (4)

Here, we use the notation

ψ̃(γ) =

ψ(γ) if γ ∈ Γ′

0 otherwise
. (5)

It is not difficult to see that dimW = n dimV and, indeed, there is a Γ-
intertwining isomorphism

La : V n → W, La(⊕ivi) = f, where f(αi) = vi, for i = 1, . . . n. (6)

Thus (π, V n) and (π,W ) are indeed equivalent realizations of the same repre-
sentation of Γ. From (6), one sees that

La = π(σ−1
ab ) ◦ Lb.

The inner product 〈·, ·〉V on V induces an inner product on W by

〈φ1, φ2〉W =
n∑
i=1

〈φ1(αi), φ2(αi)〉V ,

and an induced norm || · ||W satisfying

||φ||2W =
n∑
i=1

||φ(αi)||2V .

Furnishing V n with the ‘direct-sum’ metric, meaning that

|| ⊕ vi||2V n :=
∑
i

||vi||2V ,

we see that

the vector isomorphism La is an isometry from (V n, | · |V n) to (W, | · |W ). (7)

It is easy to deduce from these definitions that 〈·, ·〉W is independent of a,
i.e., of the choice of the {αi}. It is readily verified that the operators π(γ) for
γ ∈ Γ preserve 〈·, ·〉W , and therefore (π,W ) is also a unitary representation.
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Vector Bundles. We systematically generalize the more familiar picture in-
volving Γ′ automorphic functions to V -valued functions transforming under
Γ′ according to ψ. In order to do so, it will be convenient to use the language
of vector bundles and mappings between spaces of sections, following [2], for
example. Begin with the trivial vector bundle based on H3, with fiber V :

H3 × V.

Consider the equivalence relation

(γz, v)
Γ′∼ (z, ψ(γ−1)v), for all γ ∈ Γ′. (8)

The quotient of H3 × V by this equivalence relation is denoted by

Hψ,V := H3 × V/(∼,Γ′).

Similarly, we define

Hπ,W := H3 ×W/(∼,Γ),

and Hπ,V n . We denote the continuous sections of Hψ,V of compact support by
C0(Hψ,V ), the space of smooth sections by C0(Hψ,V ). Similarly, for the other
bundles that arise in this discussion.

The metric on V together with the hyperbolic measure on H3 induce an inner
product and a norm || · ||V on C0(Hψ,W ). Specifically, if f ∈ C0(Hψ,V ), then

|f |2V :=
∫
Γ\H3

||f(z)||2V dµ(z).

We define

L2(Γ′, ψ, V ) = completion of C0(Hψ,V ) in || · ||V .
Similarly, we obtain L2(Γ, π,W ) , resp. L2(Γ, π, V n), by completing C0(Hπ,W ),
C0(Hψ, V ) in the induced metrics. We often abbreviate L2(Γ′, ψ, V ) by L2(Γ′, ψ)
and L2(Γ, π,W ) by L2(Γ, π). Similarly, we drop the w in Hπ,W and write sim-
ply Hπ.

We now define a number of operations between the spaces of sections of the
various vector bundles, all ostensibly depending on a choice of coset represen-
tative {αi} for Γ′ in Γ, associated to a cusp a ∈ C(Γ). First, we have

Ta,V : C0(Hψ) → C0(Hπ,V n), defined by f(·) 7→ ⊕if(αi·).

Naturally, Ta,V extends to the L2-sections. Further, the isometry La of the
fiber V n onto W yields an isometry of the section spaces, also denoted by La,

La : C0(Hπ,V n) → C0(Hπ),
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We also use La to denote the extension of the isometry to L2-sections. Next
we define Ta as the composition

L2(Γ′, ψ)
Ta,V−→ L2(Γ, π, V n)

La−→ L2(Γ, π),

so that Ta = La ◦ Ta,V .

Proposition 7 The map Ta : L2(Γ′, ψ) → L2(Γ, π) has the following proper-
ties.

(a) Ta does not depend on the choice of cusp a. Therefore, we will denote Ta
henceforth by T .

(b) T is an isometry of L2-spaces, meaning that,∫
Γ′\H3

||f(z)||2V dz =
∫
Γ\H3

||Tf(z)||2Wdz, for all f ∈ L2(Γ′, ψ).

Proof. (a) Assume that f belongs to the dense subspace C0(Hψ). Then Taf ∈
C0(Hπ). Note that (Taf)(z) ∈ W , the representation space of π, the function
(Taf)(z) : Γ → W is determined by its value on the αi. We compute, using
(6), that

(Taf)(z)(αi) = (La(Taf))(z))(αi) = La(⊕jf(αjz))(αi) = f(αiz),

which has no dependence on a. (b) We calculate,

∫
Γ′\H

||f(z)||2V dz =
∫
Γ\H

∑
i

||f(αiz)||2V dz =
∫
Γ\H

|| ⊕i f(αiz)||2V n dz =

=
∫
Γ\H

||LaTa,V f(z)||2W dz,

where we have used (7) in the next-to-last equality. 2

As we will see the map T is central to all that follows, primarily because of
its additional property of intertwining the Laplacians (Proposition 10).

We use certain trivial vector bundles to treat systematically certain functions
which are not automorphic but satisfy a weaker condition which is more natu-
ral to consider in this context. The trivial vector bundles are always indicated
by E, in contrast to the non-trivial vector bundles, always indicated by H.
According to our notation convention, the trivial bundle E∗ always has fiber
equal to the endomorphism ring of the space ∗. Namely,

• EV = H3 × EndV ;
• EW = H3 × EndW ;
• EV n = H3 × EndV n.
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We define certain operations among the spaces of sections of the E-bundles.
The first operator, trWV , is defined fiber-wise using La (cf. the definition of Ta).
Namely, the trace operator

trV
n

V : End(V n) → End(V ),

gives a natural ‘trace’ operation from C∞(EV n) to C∞(EV ). By composition
with L−1

a , we obtain

trWV : C∞(EW )
L−1

a−→ C∞(EV n)
trV n

V−→ C∞(EV ).

Along the same lines, we have the natural fiberwise maps,

• trV : C∞(EV ) → C∞(H);
• trW : C∞(EW ) → C∞(H).

Given a set of coset representatives {αi} for Γ′ in Γ, as above, we define

tr{αi} on C∞(EV ) by
(
tr{αi}f

)
(z) =

n∑
i=1

f(αiz)

Unlike trWV , the operator tr{αi} depends on {αi}. However, tr{αi} becomes
independent of the choice of {αi} when restricted to the the subspace of sections
whose trace is invariant. More precisely, define the “trace-invariant” subspaces

• C∞(EV )tr,Γ′ = {f ∈ C∞(EV ) | trV (f(·)− f(γ ·)) ≡ 0 for all γ ∈ Γ′};
• C∞(EV )tr,Γ = {f ∈ C∞(EV ) | trV (f(·)− f(γ ·)) ≡ 0 for all γ ∈ Γ};
• C∞(EW )tr,Γ = {f ∈ C∞(EW ) | trW (f(·)− f(γ ·)) ≡ 0 for all γ ∈ Γ}.

By definition, we have

• trV : C∞(EV )tr,Γ′ → C∞(Γ′\H);
• trW : C∞(EW )tr,Γ → C∞(Γ\H).

It is not difficult to verify that

• trWV : C∞(EW )tr,Γ → C∞(EV )tr,Γ,
• tr{αi} : C∞(EV )tr,Γ′ → C∞(EV )tr,Γ.

Further, one can easily verify that, when restricted to C∞(EV )tr,Γ′, the operator
tr{αi} becomes independent of the choice {αi} of coset representatives. Further,
the image of the restricted operator is easily seen to lie in C∞(EV )tr,Γ. So, we
may denote the restriction of tr{αi} by

trΓ
Γ′ : C∞(EV )tr,Γ′ → C∞(EV )tr,Γ.
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We can put all these maps into a diagram, and it is elementary to verify that
the resulting diagram is commutative.

C∞(Γ′\G)

fψ ∈ C∞(EV )tr,Γ′ C∞(EV )tr,Γ C∞(Γ\G) C

fπ ∈ C∞(EW )tr,Γ

HH
HHH

HHHj

∫
Γ′\G

-
trΓ

Γ′
���������������:

trV

-trV -∫
Γ\G

�
���

���*
trW

V

���������������:

trW

When fψ ∈ C∞(EV )tr,Γ′ , fπ ∈ C∞(EW )tr,Γ as in the diagram, we set

Fψ = trV fψ and Fπ = trWfπ, (9)

so that Fψ ∈ C∞(Γ′\G) and Fπ ∈ C∞(Γ\G). Provided, further, that the
integrals converge, we define

Iψ =
∫
Γ′\G

Fψ, and Iπ =
∫
Γ\G

Fπ. (10)

Definition 8 If fψ and fπ, as in the diagram, satisfy

trΓ
Γ′fψ = trWV fπ, (11)

then we call (fψ, fπ) an inductive pair of sections.

We read off from the commutative diagram that

(fψ, fπ) is an inductive pair of sections implies that trΓ
Γ′Fψ = Fπ, and Iψ = Iπ.

3 The Laplacians and the correspondence of their spectra

On C∞(Hψ), the Laplacian can be defined in the “naive way” as a second-
order differential operator,

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ y

∂

∂y
.

There is a well-known a theory extending ∆ to an unbounded, essentially self-
adjoint operator ∆(Γ′, ψ) on L2(Γ′, ψ). We will not repeat this development
here, but refer the reader to [16], Chapter VIII for the general theory of such
extensions of operators, and Chapter IV of [6] (scalar, ψ = 1, case), or §3.2
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of [7], for specific application to the case at hand. One fact that simplifies
our discussion, is that within L2(Γ′, ψ), the eigenfunctions of ∆(Γ′;ψ) are
smooth. See e.g. [6] for the proof in the ‘scalar’ case, where ψ is the trivial
one-dimensional representation. The ‘vector’ case, where ψ is a general finite
dimensional unitary representation, is similar.

Since ∆(Γ′, ψ) is a positive operator, its eigenvalues in L2(Γ, ψ) are positive,
and can be arranged in an increasing sequence

0 ≤ λ1(Γ
′, ψ) ≤ λ2(Γ

′, ψ) ≤ · · · ,

counted according to multiplicity. Let φj ∈ L2(Γ′, ψ) be the normalized eigen-
function of ∆(Γ′;ψ) with eigenvalue λj(Γ

′, ψ).

Definition 9 We refer to the ordered set of eigenvalues {λj(Γ′, ψ)} as the
discrete spectrum of ∆(Γ′, ψ). We also use the notation

L2
disc(Γ

′, ψ) := spanC({φj}).

Note that, at a minimum, L2
disc(Γ

′, 1) contains the constant function of norm
1, since a constant function an eigenfunction of ∆(Γ′; 1) with corresponding
eigenvalue 0. It is not easy to determine how large L2

disc(Γ
′, 1) is, nor even if

it is infinite dimensional, and the answer to that question is known to depend
on Γ′. Selberg and others have studied that question in detail, and there is an
asymptotic result known as the Weyl Law for Γ′, but we will not need such
results here.

We have a similar sequence of eigenvalues for ∆(Γ, π). We denote by Φj ∈
L2(Γ, π) the eigenfunction of ∆(Γ, π) with eigenvalue λj(Γ, π), and by L2

disc(Γ, π)
the span of the Φj. The discrete spectra of the two Laplacians correspond un-
der the mapping T of §2. More precisely,

Proposition 10 We have

(a) T commutes with ∆, or more precisely, the equality

∆(Γ, π) = T ◦∆(Γ′, ψ) ◦ T−1,

is valid on the appropriate domain in L2(Γ, π).
(b) As a consequence, Tφj = Φj, and λj(Γ

′, ψ) = λj(Γ, π). So, T induces an
isometry

T : L2
disc(Γ

′, ψ) → L2
disc(Γ, π),

thus identifying eigenspaces of the Laplacians with the same eigenvalue.
(c) The mapping T , extended in the natural way to the space of smooth sections,

defines a linear isomorphism of the corresponding automorphic forms of
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weight s(2− s), denoted by

T : A(Γ′, ψ, s) ∼= A(Γ, π, s).

Proof. Following [20], p. 438, first consider the restriction of ∆(Γ′, ψ) to the
smooth sections C∞(Hψ), so that the operator is given by the ‘naive’ second-
order differential operator. The definition of ∆(Γ′, ψ) says that ∆(Γ′, ψ) acts on
a section in C∞(Hψ) as the scalar Laplacian, applies to each coordinate func-
tion associated the section. Combine this observation with the characterization
of the ‘naive’ Laplacian as the unique second-order differential operator com-
muting with all translations by group elements. From the fact that T is defined
as a direct sum of translations by group elements, we deduce T ◦∆(Γ′, ψ)◦T−1

must act as ∆(Γ, π) on the smooth sections. By the uniqueness of the self-
adjoint extension to (the appropriate dense subspace of L2(Γ, π)), we conclude
the proof of part (a).

Part (b) follows immediately from Part (a), and the definitions preceding
Proposition 10.

Part (c) is proved in §4, below. 2

We sometimes sum up part (b) by saying that T identifies the discrete spectra
of the Laplacians ∆(Γ′, ψ) and ∆(Γ, π) and part (c) by saying that T identifies
the continuous spectra of the Laplacians.

4 Eisenstein Series

We must define the vector-valued Eisenstein series that are needed to write
spectral expansions of the point-pair invariants, and hence the Eisenstein ker-
nels, occurring in the Selberg trace formula for Hψ. We establish some con-
ventions, building on the notation introduced in §2.

• When a denotes an element of Cusps(Γ) (respectively C(Γ)) b denotes an
element of Cusps(Γ′) (respectively C(Γ′)) such that b|a.

• Vb := {v ∈ V | ψ(γ)v = v, for all γ ∈ Γ′b} is called the singular space of b
with respect to ψ.

• For a|b and π a representation of Γ, we set

[π : 1] := dimCHomΓ(1, π),

and similarly for representations of Γ′. (The index notation furthers the
analogy with Galois theory introduced by means of the notation a|b.)

• Wa := {w ∈ W | π(γ)w = w, for all γ ∈ Γa}.

14



• kψ(b) = dimVb, the degree of singularity of b with respect to ψ.
• kπ(a) = dimWa.
• κ(ψ) =

∑
b∈C(Γ′) kb(ψ) (respectively κ(π) =

∑
a∈C(Γ) ka(π)), the full degree

of singularity of ψ (respectively, of π).

Note that for γ ∈ Γ′, Vγb = ψ(γ)Vb, so that the dimensions kψ(b) do not
depend on the choice of cuspidal representatives C(Γ′) among Cusps(Γ′). A
similar comment applies for the degree of singularity kπ(a).

Degree of Singularity. Recall, from §2, the following equalities

n =
∑
b|a
nb and ha(Γ

′) =
∑
b|a

1.

Further, the entries of a vector in V n may be grouped into ha(Γ
′) blocks,

each block consisting of nb contiguous entries. We denote by ıb the obvious
injection V nb ↪→ V n into the bth block of entries, with 0’s in the remaining
ha(Γ

′) − 1 blocks. Composing with the isomorphism La we have a metric-
preseving injection of V nb into W :

V nb
ıb
↪→ V n La−→ W.

Since the image of the La ◦ ib (for b|a) clearly span W , we have

W =
⊕
b|a

(La ◦ ıb)V nb . (12)

Further, the summands in (12) can be characterized succinctly. By the defini-
tion (3) of W as the module for the representation π, an element w ∈ W is
determined by its restriction to the set of coset representatives {βcjσac}, c|a
(see (2)), c|a (see 2). Then we have

w ∈ (La ◦ ıb)V nb if and only if w(βcjσac) vanishes for c 6= b. (13)

For a|b, f ∈ Vb, we define fa as the image

fa = La ◦ ıb(n−1/2
b (f , . . . , f)).

It is not difficult to see that we have the relationship

f b = π(σab)f
a for b|a. (14)

Proposition 11 For γ ∈ Γa, π(γ) is ‘block diagonal’, in the sense that

(a) π(γ) for γ ∈ Γa preserves each subspace (La ◦ ıb)V nb of W in the direct sum
decomposition (12). Part (a) has the following consequences

(b) For f ∈ Vb, fa ∈ Wa.
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(c) The degree of singularity kπ(a) = dimWa equals
∑
b|a kψ(b), so that we have

equality of the total degrees of singularities, κ(π) = κ(ψ).
(d) More precisely, for {fj}nb

j=1 an (orthonormal) basis of Vb, the set

{faj | b|a, 1 ≤ j ≤ nb}

is an (orthonormal) basis for Wa.

Proof. Let γ ∈ Γa. As an element of the function space W , π(γ)f is determined
by its value on the coset representatives βcjσac. Let f ∈ (La ◦ ıb)V nb . Then,
f(Γ′βckσac) = 0 if c 6= b, for all γ′ ∈ Γ′, by the above characterization (13). We
have further, because f ∈ W ,

π(γ)f(βcjσac) = f(βcjσacγ)

However, note that, since γ ∈ Γa,

(βcjσacγ)a = c.

This shows that

βcjσacγ ∈ Γ′βckσac,

and therefore, if c 6= b,

π(γ)f(βcjσac) = f(βcjσacγ) = 0,

by the above characterization of f . By the characterization of (La ◦ ıb)V nb

above we see that π(γ)f ∈ (La ◦ ıb)V nb . This completes the proof of (a).

For (b), note that in order to check that π(γ)fa = fa, when γ ∈ Γa, all that
remains, in light of what we have shown so far, is to show that

π(γ)fa(βbjσab) = f , for 1 ≤ j ≤ nb.

Note that since γ ∈ Γa, we have γ = βakγ
′, for some 1 ≤ k ≤ na and some

γ′ ∈ Γ. Further,

βbjσabβaka = b, so that βbjσabβak ∈ βblσabΓ′, for some 1 ≤ l ≤ nb.

Set

γ′′ = (βblσab)
−1βbjσabβak ∈ Γ′.

We know fa(βbjσab) = f , by the definition of fa. But

(π(γ)fa)(βbjσab) = fa(βbjσabγ) = fa(βblσabγ
′′) = ψ(γ′′)fa(βblσab) = ψ(γ′′)f ,

since γ′′ ∈ Γ′. But also note that γ′′ ∈ Γ′b, so that ψ(γ′′)f = f . We have
therefore, shown that π(γ)fa(βbjσab) = f , as was required.
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For (c), that π(γ) is block-diagonal for γ ∈ Γa implies that

π|Γa = ⊕b|aIndΓa
Γb

(ψ|Γ′
b
).

We then have by Frobenius reciprocity

ka(π) = [π|Γa : 1] =
∑
b|a

[IndΓb

Γ′
b
(ψ|Γ′

b
) : 1] =

∑
b|a

[ψ|Γ′
b
: 1] =

∑
b|a
kb(ψ).

In view of part (c), part (d) follows by observing that the {f bj } for b|a and
1 ≤ j ≤ nb, form a set of linearly independent vectors of the cardinality equal
to dimWa. 2

Scaling Matrices. The other new element we need to introduce before the
definition the vector Eisenstein series associated to the cusp a is the scaling
matrix Sa. Our definition of the scaling matrix, which differs from that found
in previous literature on the subject, turns out to eliminate certain ‘extra fac-
tors’ that pop up in the Eisenstein series correspondence, as found in previous
treatments. These extra factors in our view somewhat obscure the essential
matter.

Definition 12 Fix a ∈ C(Γ). Associate an element Sa ∈ PSL2(C) such that

S−1
a a = ∞. (15)

For every b ∈ Ca(Γ′), i.e., b ∈ C(Γ′) such that b|a, set

Sb = σabSa. (16)

Note the following features of the scaling matrix Sa. First, since Sa is required
to lie only in SL2(C)—not Γ—there is not only one—but a continuous family
of—possible choices of Sa. Second, in our treatment there is no definite re-
lationship between the group Γ and the Sa for a ∈ C(Γ). What relationship
there is between the discrete groups and the choice of scaling matrices exists
between different b belonging to a fixed Ca(Γ

′). Namely, the somewhat arbi-
trary choice of the Sa ∈ C(Γ) determines the Sb for all b ∈ Ca(Γ

′) via the
formula (16). This comment extends to every object defined in terms of the
Sa, such as the Eisenstein seres. The justification for our way of proceeding
will become manifest in the simple form of the relationship we obtain between
the Eisenstein series (Proposition (14)).

Vector-valued Eisenstein Series. Now we have assembled the various in-
gredients for the definitions of the Ea and Eb. In the below, z ∈ H3 is of the
form

z = x+ yj, withx ∈ C, y > 0,
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so that y(z) denotes the ‘y’ coordinate of z, a positive real number.

Definition 13 Let a ∈ C(Γ), and let the scaling matrix Sa be defined as
above. For Res > 2, the Eisenstein series is defined by

Ea(z, s; π,w) =
∑

γ∈Γa\Γ
ys(S−1

a γz)π(γ−1)w, a ∈ C(Γ), w ∈ Wa. (17)

Similarly,

Eb(z, s;ψ,v) =
∑

γ′∈Γ′
b
\Γ′
ys(S−1

b γ′z)ψ(γ′
−1

)v, b ∈ C(Γ′), v ∈ Vb. (18)

The Eisenstein series of (17) extend to elements of A(Γ, π, s), the space of
π-automorphic forms of weight s(2 − s). Similarly, the Eisenstein series of
(18) extend to Eisenstein elements of A(Γ, π, s). For the details of the theory
of meromorphic continuation we refer to §6.1 of [6] for the H3, scalar case,
and to §3.7 of [7] in the H3, vector case, to [5] for the H2, ‘scalar’ case. The
methods of proof represented in these sources all have their origins in the work
of Selberg [18].

Directly from Definition 13, we deduce the following two equivariance proper-
ties of the Eisenstein series.

Equiv 1 Eηa(z, s; π,w) = Ea(z, s; π, π(η−1)w), for all η ∈ Γ.
Equiv 2 Eb(z, s; π, f

a) = Eb(z, s; π, f
b), for all b|a.

Proof of equivariance properties. For Equiv 1, one first notes that both sides
do make sense because

Wηa = π(η−1)Wa.

We have from (17),

Eηa(z, s; π,w) =
∑

γ∈Γηa\Γ
ys(S−1

ηa γz)π(γ−1)w =
∑

γ∈Γηa\Γ
ys(S−1

a η−1γz)π(γ−1)w,

since σa,ηa is just η. Then we may change variables γ 7→ ηγ, to obtain

Eηa(z, s; π,w) =
∑

γ∈Γa\Γ
ys(S−1

a γz)π(γ−1η−1)w,

which one readily recognizes as

Ea(z, s; π, π(η−1)w).
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For Equiv 2, we have

Ea(a, s; π, f
a) =

∑
γ∈Γa\Γ

ys(S−1
a γz)π(γ−1)fa

=
∑

γ∈Γa\Γ
ys(S−1

b σabγz)π(γ−1)fa

=
∑

γ∈Γb\Γ
ys(S−1

b γz)π(γ−1)π(σab)f
a

=
∑

γ∈Γb\Γ
ys(S−1

b γz)π(γ−1)f b

where in the second-to-last line we have done a change of variables, setting
the ‘new’ γ equal to σabγ, and in the last line we have used (14). 2

Proposition 14 For b|a and f ∈ Vb, we have

T : Eb(z, s;ψ, f) = n
1/2
b Ea(z, s; π, f

a). (19)

Proof. Fix a coset representative

αi = bcjσac.

of Γ′ in Γ, in the above notation. Then we first claim that

TEb(z, s;ψ, f)(α) = Eb(αz, s;ψ, f). (20)

The reason for (20) is that, by the definition of Ta, and La,

TEb(z, s;ψ, f)(αi) = La ◦ ⊕kEb(αkz, s;ψ, f)(αi) = Eb(αz, s;ψ, f).

Applying (18) to the right-hand side of (20), we obtain

TEb(z, s;ψ, f) =
∑

η∈Γ′
b
\Γ′
ys(S−1

b ηαiz). (21)

For readability of the formulas, from this point, we drop the subscript i from
αi, writing simply α instead. Note that, by Equiv 2, the right-hand side of
(19) is

n
1/2
b Eb(z, s; π, f

b)(α) = n
1/2
b

∑
γ∈Γb\Γ

ys(S−1
b γz)π(γ−1)fb(α)

= n
1/2
b

∑
Γb\Γ

ys(S−1
b γz)f b(αγ−1).

By definition of f b,

f b(αγ−1) = n−1/2(La(0, . . . , 0, f , . . . , f , 0, . . . , 0))(αγ−1).
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If αγ−1 ∈ Γ′βbj for some j, 1 ≤ j ≤ nb. Thus we have

f b(αγ−1) =

ψ(αγ−1β−1
bj )f if αγ−1 ∈ Γ′β−1

bj , 1 ≤ j ≤ nb

0 otherwise.

We therefore may write

f b(αγ−1) =
nb∑
j=1

ψ̃(αγ−1β−1
bj )f ,

where by definition ψ̃(·) is ψ on Γ′ and 0 on the complement Γ − Γ′ of Γ′ in

Γ. Since the n
−1/2
b coming from the normalization of f b cancels the n

1/2
b we

started with, up to this point we have shown that

n
1/2
b Eb(z, s; π, f

b)(α) =
∑

γ∈Γb\Γ

nb∑
j=1

ys(S−1
b γz)ψ̃(αγ−1β−1

bj )f .

By Proposition 5, the two summations on the right-hand side actually parametrize
a single summation of a ‘new’ γ over Γ′b\Γ. So up to this point, we have shown
that

n
1/2
b Eb(z, s; π, f

b)(α) =
∑

γ∈Γ′
b
\Γ
ys(S−1

b γz)ψ̃(αγ−1)f

=
∑

γ∈Γ′
b
\Γ′

∑
h∈Γ′\Γ

ys(S−1
b γz)ψ̃(αh−1)f

But αh−1 ∈ Γ′ if and only α = h, since h is ranging over coset representatives,
and α is a fixed coset representative. In the case that α = h, ψ̃(αh−1) =
ψ̃(1) = 1. Therefore, we see that

n
1/2
b Eb(z, s; π, f

b)(α) =
∑

η∈Γ′
b
\Γ′
ys(S−1

b ηαiz),

which matches the right-hand side of (21). This completes the proof of Propo-
sition 14. 2

As we will now explain, Proposition 14 implies equalities between various other
spectral ‘objects’ associated to the Kleinian groups Γ and Γ′.

Determinant of Scattering matrix. As noted in Theorem 3.5 of [12], the
inductivity of the trace formula also implies that a number of other spectral
objects closely related to the Selberg Zeta function satisfy the Artin formalism.
Friedman, in [9], Theorem 5.1 proves that the determinant φ of the scatter-
ing matrix S, in the setting of this paper, satisfies the Artin formalism, but
under the assumption of normality of Γ1 in Γ. Since the scattering matrix
is entirely an expression of the Fourier expansion of the Eisenstein series at
the singular cusps, the Artin Formalism for the scattering matrix now follows
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immediately and in full generality (i.e., without the normality assumption)
from our Proposition 14.

To save space, we refer the reader to [4] for further details concerning the
determinant of the scattering matrix. Our purpose in bringing this example
up here is to point out that the Artin formalism for any spectral object which
is expressible as “images” of the trace formula or parts of the trace formula
is an immediate consequence of the termwise inductivity of the trace formula,
whose proof we are engaged in and which will be completed in Theorem 20.
Thus, in keeping with the vision of [12], the inductivity of the trace formula, or
more precisely the ‘pre’-trace formula, is the perspective unifying all aspects
of the Artin formalism.

Eisenstein Kernels. In order to define these kernels, we have to explain some
data associated to the cuspidal subgroups Γa. For each a ∈ C(Γ), there is a
lattice Λa in C such that

c(Sa)Γ
U
a =

1 Λa

0 1

 :=


1 λ

0 1


∣∣∣∣∣∣∣ λ ∈ Λα


We let |Λa| be the volume of the quotient Λa\C, or equivalently, the Euclidean
measure of a fundamental parallelogram for Λa.

It is a new feature of the case of Kleinian groups (subgroups of SL(2,C)) as
opposed to Fuchsian groups (subgroups of SL(2,R)) that the cuspidal sub-
group can properly contain the unipotent cuspidal subgroup. Therefore, we
have another piece of data, namely the index

[Γa : ΓUa ] = 1, 2, 3, 4, or 6.

The five possibilities for the index are the only ones allowed by the so-called
‘crystallographic restriction’. The fundamental relation among these data and
the width of the cusp b ∈ Ca(Γ′) is that

nb =
[Γa : ΓUa ]

|Λa|
|Λb|

[Γb : ΓUb ]
. (22)

Now, we define the Eisenstein kernel

Eπ : H×H → C,
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by

Eπ(z, z′) =
∑

a∈C(Γ)

ka(π)∑
j=1

[Γa : ΓUa ]

|Λa|
1

4π

∫
R

h̃(t)Ea(z, 1+it; π, faj )⊗Ea(z′, 1 + it; π, faj ) dt,

(23)

where {faj } is an orthonormal basis of Wa. Here, h̃(t) is a function satisfying
certain conditions to be specified precisely in §5, below. The exact nature of
h̃(t) does not matter at the moment. What matters is that the integral over
R in the definition of Eπ(z, z′) converges, which we simply assume for the
moment.

We have a definition of Eψ(z, z′) associated to Γ′ and the representation (ψ, V ),
which is entirely analogous.

We study the Eisenstein kernel restricted to the diagonal, i.e., the locus of
z = z′. It is not difficult to verify that, if we set

fπ(z) := Eπ(z, z), (24)

then

trWfπ(z) =
∑

a∈C(Γ)

ka(π)∑
j=1

[Γa : ΓUa ]

|Λa|
1

4π

∫
R

h̃(t)|Ea(z, 1 + it; π, faj )|2W dt.

The automorphicity of the Eisenstein series allow us to deduce that,

fπ ∈ C∞(EW )tr,Γ.

Similarly, if we set

fψ(z) := Eψ(z, z), (25)

then we have

fψ ∈ C∞(EV )tr,Γ′ .

In fact, Proposition 14 implies the following.

Corollary 15 Wtih fψ, fπ as given by (24), (25) above (fψ, fπ) forms an
inductive pair in the sense of §2. As a consequence, we have

trV trΓ
Γ′Eψ(z, z) = trWEπ(z, z), for all z ∈ Γ\G.

Proof. We are to show that (fψ, fπ) = (Eψ,Eπ) satisfy (11), i.e., we are
supposed to show that

trΓ
Γ′Eψ = trWV Eπ
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We calculate that

trΓ
Γ′Eψ(z, z) =

n∑
i=1

∑
b∈C(Γ′)

kb(ψ)∑
j=1

[Γb : ΓUb ]

|Λb|
1

4π

∫
R

h̃(t)Eb(αiz, 1+ it;ψ, f bj )⊗Eb(αiz, 1 + it;ψ, f bj ) dt,

= trWV
∑

b∈C(Γ′)

kb(ψ)∑
j=1

[Γb : ΓUb ]

|Λb|
1

4π

∫
R

h̃(t)TEb(z, 1+it;ψ, f bj )⊗TEb(z, 1 + it;ψ, f bj ) dt

= trWV
∑

b∈C(Γ′)

kb(π)∑
j=1

nb
[Γb : ΓUb ]

|Λb|
1

4π

∫
R

h̃(t)Ea(z, 1+it;ψ, (f bj )
a)⊗Ea(z, 1 + it;ψ, (f bj )

a) dt

Applying (22) and Proposition 11(c), we deduce that

trΓ
Γ′Eψ(z, z) =

= trWV
∑

a∈C(Γ)

ka(π)∑
j=1

[Γa : ΓUa ]

|Λa|
1

4π

∫
R

h̃(t)Ea(z, 1 + it;ψ, faj )⊗ Ea(z, 1 + it;ψ, faj ) dt

= trWV Eπ(z, z).

This completes the proof of the corollary. 2

We cannot immediately say anything concerning integrals over the respec-
tive locally symmetric spaces, because the integrals of the Eisenstein kernels
themselves do not converge. What does converge is the integral of a certain
difference of the Eisenstein kernels and part (the ‘cuspidally periodized’ ker-
nel Kψ

cusp—see below) of the point-pair invariant. We will formulate these this
notions in the next section.

5 Pre-Trace Formula

We are now working towards the statement of a “schematic” formulation (31)
of the Selberg trace formula that we call the pre-trace formula.

Point-pair invariants and the Selberg-Harish-Chandra transform.

Definition 16 The basic point-pair invariant δ : H × H → [1,∞) is
defined by

δ(z, z′) =
|x− x′|2 + y2 + y′2

2yy′
= cosh(d(z, z′)). (26)

For any k ∈ S([1,∞)), the Schwartz space, the point-pair invariant K
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associated to k is a function on H×H defined by

K(z, z′) = k(δ(z, z′)), for z, z′ ∈ H.

By (26), K(z, z′) depends only on the distance d(z, z′) between the points of
the pair (z, z′) ∈ H×H. Hence, the terminology “point-pair invariant”.

Definition 17 For a measurable function k on [1,∞), define the Selberg-
Harish-Chandra transform h : C → C of k by the integral

h(λ) =
π

s

∫ ∞

1
k
(

1

2

(
t+

1

t

)) (
ts − t−s

) (
t− 1

t

)
dt

t
for s 6= 0, (27)

when the integral exists, where λ and s are related by

λ = 1− s2.

In (27), for s = 0, replace 1
s
(ts − t−s) by is limit 2 log t.

For the general theory of the Selberg-Harish-Chandra transform, see §3.5 of
[6]. The only parts of the general theory that we need to recall here is that

• For k ∈ S([1,∞)), h indeed exists (the integral (27) converges).
• In the spectral expansion (30), below, of the periodized kernelKΓ

π associated
to k, and the Kleinian group Γ, the eigenvalues in the discrete spectrum of
the Laplacian appear as the arguments of the function h.

• The function h̃ appearing inside Eπ above is related to h by

h̃(r) = h(1 + r2).

Next, we give the Selberg conditions, which are sufficient conditions given in
terms of the Selberg-Harish-Chandra transform h : C → C of k for the pair
(h, k) to satisfy the pre-trace formula 31 below.

Sel 1 h is holomorphic in the strip {s ∈ C | |Im(s)| < 2 + δ} for some δ > 0.
Sel 2 h(r) = O((1 + |r|2)−3/2−ε) in this strip.

Partially-periodized kernels. We continue in the setup of §2. Let Ω be any
subset of Γ which is closed under conjugation by elements of Γ. Then define

KΩ
π : H×H → C,

by
KΩ
π (z, z′) =

∑
γ∈Ω

K(γz, z′)π(γ−1). (28)

For example, we have KId
π when Ω = {I2} (equal to the original kernel itself),

and KΓ
π , the fully periodized kernel. We also have Khyp

π , Knce
π and Kcusp

π when
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Ω is the the set of hyperbolic elements, noncuspidal elliptic elements, and
cuspidal elements, respectively. (By definition, γ is said to be hyperbolic when
the absolute value of its trace as a matrix |tr(γ)| > 2).

In contrast to the scalar case, the whole partially periodized kernel KΩ
π lacks

the property of Γ-invariance. However, if we ‘restrict to the diagonal’ and set

fΩ
π (z) := KΩ

π (z, z), (29)

then we do have

fΩ
π ∈ C∞(EW )tr,Γ.

We therefore define

FΩ
π = trWf

Ω
π ∈ C∞(Γ\G).

Finally, when FΩ is integrable, this allows us to define

IΩ
π =

∫
Γ\G

FΩ
π (z) dz.

It is not particularly difficult to show—and it is part of the standard theory of
Selberg—that the ‘orbital’ integrals I Id

π , Ihyp
π , Ince

π converge. See, for example,
§5.2 of [6]. Although the integral of F cusp

π (z) over Γ\H does not converge, we
can define

f̃ cusp
π = f cusp

π − Eπ ∈ C∞(EW )tr,Γ

It turns out that the difference

F̃ cusp
π := trW (f cusp

π − Eπ) = trwf
cusp
π − trWEπ

is indeed integrable on Γ\H. Demonstrating the integrability of F̃ cusp
π involves

a fairly deep calculation of the asymptotics over compact “approximating
domains”. This calculation is one of the main ingredients of the trace formula,
and it was first carried out by Selberg in the H2 case. For the corresponding
calculations in the H3, scalar case see Proposition 6.5.3 of [6]. See §4.3 of [7]
for the H3, vector case. A corresponding, much more general statement, is now
part of the standard theory of the Arthur-Selberg trace formula for general
reductive groups. See, e.g., [1], Lectures 6–8.

Spectral Expansion and Pre-trace formula. The other main ingredient in
the pre-trace formula is the spectral expansion of the fully periodized kernel,
which gives

KΓ
π (z, z′) =

∑
j

h(λj(Γ, π))φj(z)⊗ φj(z′) + Eπ(z, z′), (30)

for which see Chapter 4 of [7] in this particular case, and §6.3 of [6] and
Chapter IV of [19] for similar cases.
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Re-arranging the spectral expansion, writing Γ as a union of conjugacy classes,
and then restricting to the diagonal by setting z = z′, we have∑

j

h(λj(Γ, π))φj ⊗ φj = f Id
π + fhyp

π + fnce
π + f̃ cusp

π .

Applying trW of both sides results in the equality of functions,∑
j

h(λj(Γ, π))|φj|2 = F Id
π + F hyp

π + F nce
π + F̃ cusp

π .

Integrating (and, of course, using the integrability of each of the terms on the
right side) yields the equality∑

j

h(λj(Γ, π)) = I Id
π + Ihyp

π + Ince
π + Ĩcusp

π . (31)

We refer to (31) as the pre-trace formula associated to (Γ, π). Further,
more explicit, evaluation of the integrands, as undertaken by Selberg, Venkov
in [22], and §§5.2 and 6.5 of [6], results in what is properly referred to as the
trace formula associated to the pair (Γ, π). However, the ‘pre-trace’ formula,
(31) will suffice for our purposes.

Naturally, we can formulate the an analogous pre-trace formula for (Γ′, ψ), as
well as the corresponding kernels, and restrictions and their traces. We have
already established an equality, in Proposition 10, between the ‘spectral’, i.e.
left-hand, sides of two the pre-trace formulas for (Γ, π) and (Γ′, ψ), and also an
equality for part (namely the Eisenstein integral part) of the cuspidal integral
on the ‘geometric’, i.e., right-hand, side. The main result of the next section,
for which we return to the notion of an inductive pair of sections, completes
this development by establishing equalities between all the remaining pairs of
‘corresponding’ terms in the two trace formulas.

6 Inductivity and Applications

Inductive pairs of subsets. For this paragraph we maintain the notation
established in the Sections 2–5.

Definition 18 A pair (Ω′,Ω) of conjugation-invariant subsets of (Γ′,Γ) is
said to form an inductive pair of subsets if for every choice of k ∈
S([1,∞)), the pair of ‘diagonal restrictions’

(fΩ′

ψ , f
Ω
π ) ∈ C∞(Eψ)tr,Γ′ × C∞(Eπ)

tr,Γ, defined as in (29),

forms an inductive pair of sections in the sense of §2.
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Proposition 19 Assume that (Ω,Ω′) is a pair of conjugation invariant sub-
sets of (Γ,Γ′) such that

Ω′ = Ω ∩ Γ.

Then (Ω,Ω′) form an inductive pair of subsets of (Γ,Γ′).

Proof. We calculate that for z ∈ H, and arbitrary k ∈ S([1,∞)),

trΓ
Γ′f

Ω′

ψ (z) =
n∑
i=1

∑
γ∈Ω′

K(γαiz, αiz)ψ(γ−1)

=
n∑
i=1

∑
γ∈Ω

K(α−1
i γαiz, z)ψ̃(γ−1) (by (5))

=
n∑
i=1

∑
γ∈α−1

i Ωαi

K(γz, z)ψ̃(αiγ
−1α−1

i ) (change of variable γ 7→ αiγα
−1
i )

=
n∑
i=1

∑
γ∈Ω

K(γz, z)ψ̃(αiγ
−1α−1

i ) (conjugation-invariance of Ω)

= trWV
∑
γ∈Ω

K(γz, z)π(γ−1) (by (4))

= trWV f
Ω
π (z).

Thus (fΩ′
ψ , f

Ω
π ) ∈ C∞(EV )tr,Γ′×C∞(EW )tr,Γ forms an inductive pair of sections.

This demonstrates that (Ω,Ω′) is an inductive pair of subsets. 2

Remarks.

• The nature of the function k used to define K plays no role in the proof of
Proposition 19—for example K can even be replaced by the “basic” point
pair invariant δ, without affecting the argument in any way.

• Note that there is in Proposition 19 no normality assumption on the sub-
group Γ′. Only the subsets Ω′ and Ω are assumed to be conjugation-invariant
in the respective group Γ and Γ′.

Artin Formalism Method I: Green’s Kernel. Consider the following func-
tion, or more precisely, family of functions indexed by a complex parameter
s, with Re(s) > 1, and taking argument δ ∈ (1,∞),

Φs(δ) =
(δ +

√
δ2 − 1)−s√
δ2 − 1

=
exp(−s cosh−1 δ)√

δ2 − 1
.

Because of the rapid decay of Φs, we can apply Definitions 16 and 17 with
k = Φs to obtain the associated kernel

KΦs(z, z
′) = Φs(δ(z, z

′)),
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and Selberg-Harish Chandra transform hΦs . The following facts concerning
hΦs are well-known

Φs 1 The transform hΦs does not satisfy the Selberg conditions Sel 1–2, and
therefore KΦs not admissible as a kernel for the pre-trace formula.

Φs 2 The Fourier transform (see (33), below) of h̃Φs can be computed, and we
have

gs(x) =
2π

s
e−s|x|.

Φs 3 Let Ihyp
π (s) be the orbital integral associated to the kernel KΦs(z, z

′) and
the hyperbolic elements of Γ, as in §5 above. Then Φs 2 and Proposition
22, below, imply that for Re(s) > 1,

Ihyp
π (s) =

2π

s
d logZΓ,π(s).

The shortest route to obtaining the Artin formalism of the Selberg zeta
function for general commensurable pairs of Kleinian groups uses Φs 3 .
From the discussion of the last part of §2, Proposition 19 implies that, in
the above notation, Ihyp

ψ (s) = Ihyp
π (s) for Re(s) > 1, and then Φs 3 and

meromorphic continuation complete the proof of the Artin formalism of the
zeta function. However, because of Φs 1 , this method does not fit into
the present paper’s over-arching theme of seeing all aspects of the Artin
Formalism as ‘images’ of the inductivity of the terms of the trace formula.
We therefore say no more about the Green’s function method here, and refer
the reader to our other paper [4] for the details.

Equality of pairs of terms in the pre-trace formula. Now we apply the
result of this section to all of the terms appearing in §5.

Theorem 20 All of the following are inductive pairs of sections.

(a) fψ(z) = KΩ′
ψ (z, z), fπ(z) = KΩ

π (z, z) for (Ω′,Ω) the hyperbolic, or identity,
or noncuspidal elliptic elements of (Γ′,Γ).

(b) f̃ cusp
ψ (z) = Kcusp

ψ (z, z)− Eψ(z, z), f̃ cusp
π (z) = Kcusp

π (z, z)− Eπ(z, z).

(c) fdisc
ψ =

∑
j

h(λj)φj ⊗ φj, f
disc
π =

∑
j

h(λj)Φj ⊗ Φj.

Proof. Part (a) follows immediately from Proposition 19. One applies the
proposition with Ω equal to the set hyperbolic, identity, or noncuspidal elliptic
elements of Γ.

Part (b) follows from Proposition 19 applied with Ω equal to the set of cuspidal
elliptic elements, from Corollary 15, and from the evident observation that the
difference of two pairs of inductive pairs of sections is an inductive pairs of
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sections.

Part (c) simply rephrases Part (b) of Proposition 10. 2

Using the formalism introduced at the end of Section 2, we derive the following
more ‘familiar’ forms of the equalities in Theorem 20, essentially images of
these equalities under certain ‘trace’ maps.

Corollary 21 We have the following equalities

(a) For Ω ∈ {hyp, nce, Id},

trΓ
Γ′|φj| = |Φj|, trΓ

Γ′F̃
cusp
ψ = F̃ cusp

π , trΓ
Γ′F

Ω
ψ = FΩ

π .

(b) For Ω ∈ {hyp, nce, Id},∑
j

h(λj(Γ, π)) =
∑
j

h(λj(Γ
′, ψ)), Ĩcusp

π = Ĩcusp
ψ , IΩ

π = IΩ
ψ .

In other words, in the pre-trace formulas for Γ and Γ′, each of the corre-
sponding pairs of terms are equal.

Readers should compare part (a) of Corollary 21 to the relation A4. Induc-
tion. in §2 of [12], which is the corresponding inductivity statement in the
context of quotients of compact manifolds discussed in that article.

Artin Formalism Method II: Heat Kernel. In contrast to Green’s Kernel,
the heat kernel is suitable for use as a test function in trace formula. However,
the use of the heat kernel does not give the ‘additive’ Selberg zeta function
directly. Rather, the heat kernel, through the hyperbolic contribution to the
trace formula, gives a certain integral transform of this zeta function.

In this section only we use the notation kt to refer to a specific family of test
functions

kt ◦ cosh−1 = e−t∆G/K , the heat family of gaussians. (32)

The point-pair invariant Kt associated to the heat family of Gaussians kt is
called the heat kernel. For an explanation of this terminology and a general
introduction to the heat kernel we refer to [2]. For explicit formulas (which
we will not use) and other characterizations of the heat kernel in the specific
context of hyperbolic space we refer to [13] [12], [14]. Among the analytic prop-
erties of the heat kernel, the one which interests us in the current context is
quadratic exponential decay. In particular, the decay property of the kt is more
than sufficient to imply that the associated ht satisfies Selberg’s conditions.
Thus, Kt is a suitable kernel for the pre-trace formula.
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In order to make the connection between the heat kernel in the trace formula
and the Selberg zeta function, we will need the following standard identity
from the Selberg theory, the explicit evaluation of the hyperbolic contribution
to the trace formula of Γ. In order to state Proposition 22 we make use of both
the notation for terms of the trace formula introduced in §5 and the notation
used to define the Selberg zeta function and state its logarithmic derivative in
§1

Proposition 22 Using the notation for objects arising in trace formula in-
troduced in §5, we have

Ihyp
π = 2

∑
{P0}Γ

∞∑
n=1

logN(P0)trWπ(P n
0 )

m(P0)|N(P0)n/2 −N(P0)−n/2|2
g(n logN(P0)),

where

• {P0}Γ is the set of primitive hyperbolic conjugacy classes in Γ.
• g is the Fourier transform of h̃, i.e.,

g(x) =
1

2π

∫
R
h̃(t)e−itxdt. (33)

and the remainder of the notation has been explained above.

For the computation of Ihyp
π , see, e.g., Theorem 5.2.2 of [6]. There, the authors

consider exclusively the case of π the trivial one-dimensional representation,
in which case the factor trWπ(P n) reduces to 1. The modifications needed to
consider the general case are found in §4.3 of [7].

Definition 23 With the heat kernel Kt as the test kernel, the hyperbolic con-
tribution Ihyp

π to the trace formula is called the theta function ϑπ associ-
ated to (Γ, π).

We now combine Proposition 22 with the explicit formula

gt(x) =
(

1

4πt

)1/2

e−x
2/4t,

associated, via (27) and (33) to the family of heat Gaussians kt on the mani-
forld G/K. We obtain the evaluated form of ϑπ,

ϑπ(t) =
1

(πt)1/2

∑
{P0}Γ

∞∑
n=1

logN(P0)trWπ(P n
0 )

m(P0)|N(P0)n/2 −N(P0)−n/2|2
exp(−(n logN(P0))

2/4t),

with all notation as in Proposition 22. Compare the formulas on the bottom
of p. 233 of [15], as well in §VIII.5 of [14].
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Proposition 24 The logarithmic derivative of the Selberg zeta function is
related to the Gauss transform of ϑΓ,π(t) by

d logZΓ,π(s)/ds =
s

2
(Gauss(ϑΓ,π))(s) :=

s

2

∫ ∞

0
e−s

2tϑΓ,π(t) dt. (34)

Proof. Point by point, our calculations are formally analogous to [15], p. 239–
40, but with the sums changed in order to be appropriate to the Kleinian,
rather than Fuchsian case. Note that [15] uses χπ to denote that trace that
we write more explicitly as trWπ. Also, throughout our calculations, {P}Γ

denotes a complete system of non-conjugate elements of Γ, {P0} denotes an
associated complete system of non-conugate primitive elements, and for for P
in the former, P0 denotes the associated element of the latter, i.e., the unique
primitive element P0 such that P = P n

0 for some integer n. In the range of
convergence Re(s) > 1, we calculate that

d logZΓ,π(s)/ds =
∑
P

trWπ(P ) logNP0

m(P )|λ(P )− λ(P )−1|2
N(P )−s

=
∑

P0 primitive

∞∑
n=1

trWπ(P n
0 ) logNP0

m(P0)|λ(P0)− λ(P0)−1|2
(|λ(P0)|2)−ns

=
∑

P0 primitive

∞∑
n=1

trWπ(P n
0 ) log(|λ(P0)|2)

m(P0)|λ(P n
0 )− λ(P n

0 )−1|2
[
(|λ(P0)|2)−s

]n
=

∑
P0 prim

∞∑
n=1

trWπ(P n
0 ) logN(P0)

m(P0)|λ(P n
0 )− λ(P n

0 )|−1|2
×

× s
∫ ∞

0
e−s

2t(4πt)−1/2e−
(n log N(P0))2

4t dt

=
s

2

∫ ∞

0
e−s

2tϑΓ,π(t) dt.

Since d logZ(s) extends to a meromorphic function on C, the equality extends
from the half-plane Res > 1 to give an equality of meromorphic functions. 2

The problem of meromorphic continuation of ZΓ,π, as opposed to d logZΓ,π to
the entire complex plane is more delicate than in the Fuchsian case. Friedman
has shown in [8] that the residues of d logZΓ,π can fail to be integers in certain
circumstances (for certain choices of Γ, π). More precisely, he has shown in the
case when Γ has a single cusp at ∞ (combining material from Lemmas 6.7,
6.8, 6.10 of [8]),

• Suppose that [Γ∞ : ΓU∞] = 1 or 2. Then the poles of d logZΓ,π are simple
with integral residues, and consequently ZΓ,π has meromorphic continuation
to C.

• Suppose that [Γ∞ : ΓU∞] = 3. Then the poles of d logZΓ,π are rational with
denominators occurring up to 6, and consequently Z6

Γ,π (and in certain cases,
no smaller power of ZΓ,π) has meromorphic continuation to C.
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• Suppose that [Γ,∞ : ΓU∞] = 4. Then for some integer N , ZN
Γ,π is a mero-

morphic function, but there is no known universal bound on N (power N
sufficing for all choices of Γ, π).

• Suppose that [Γ∞ : ΓU∞] = 6 (the last possibility allowed by the crystallo-
graphic restriction). Then it is conjectured that for some N , depending on
Γ, π, ZN

Γ,π is a meromorphic function on C.

Incorporating these caveats about the meromorphicity of ZΓ,π, we can deduce
from our main results the following generalization of the Artin formalism of
ZΓ,π.

Corollary 25 For Γ,Γ′ Kleinian groups, i.e., discrete cofinite subgroups of
SL2(C) containing {±1} such that

Γ′ ⊆ Γ with [Γ : Γ′] = n <∞,

we have

d logΓ,π(s) = d logΓ′,ψ(s),

understood as an equality of meromorphic functions. Consequently, when for
some N ≥ 1, ZN

Γ,π (equivalently ZN
Γ′,ψ) has a meromorphic continuation to all

s ∈ C, we deduce the equality of meromorphic functions

ZN
Γ,π = ZN

Γ′,ψ.

Proof. By specializing Corollary 21(b) to the case Ω = hyp, we obtain the
equality ϑΓ,π = ϑΓ′,ψ. Under the Gauss transform of Proposition 24, the equal-
ity of theta functions transforms to the equality of logarithmic derivatives of
Selberg zeta functions. 2

7 Application: ZΓ(s, χ) for Γ = SO(3,Z[i]) and SO(2, 1)Z

In light of some results in [3], we can use Corollary 25 to relate the Selberg
zeta function of the quotient of SO(3,C) by its full ring of integer points, for
certain representations, to the ‘standard’ Selberg zeta function of SL(2,C)
modulo its integer points, for certain related representations. In order to set
this up we recall the results announced in §2 of [3].

As explained in §2 of [3], SO(3,Z[i]) has a model as the elements of Aut(sl2(C))
preserving the Z-module on a basis of sl2(C) which is orthonormal for the
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Killing form B. For definiteness, one fixes the B-orthonormal basis of sl2(C)

X1 =

0 1

1 0

 , X2 =

 0 i

−i 0

 , Y =

1 0

0 −1

 .
Then setting β = Z-span{X1, X2, X3}, with the subgroup of G = SO(B), we
identify the subgroup preserving the lattice β with Γ = SO3(Z[i]). Taking for
granted that this model is intended, we will henceforth write G = SO3(C) for
SO(B) and Γ = SO3(Z[i]) for the discrete subgroup preserving β.

We use c(·) to denote that conjugation map for matrices.

Proposition 26 The map c(·) induces an isomorphism of Lie groups,

SL2(C)/{±I}
∼=→ G.

Proof (sketch). The map c(·) is a concrete realization of the adjoint map
Ad : SL2(C) → Aut sl2(C). It is well-known that for any semisimple Lie group
G, Ad provides a embedding of G/Z(G) into Aut(g), where g = Lie(G) and
Z(G) is the center ofG. Further, as is well known, Aut(g) ⊆ O(B), the group of
transformations of g preserving the Killing form. Thus, the abstract argument
says that c induces a morphism into O(B). Comparison of dimensions shows
that the morphism is an isomorphism onto SO(B) = G. 2

As a result of Proposition 26, we see that the inverse image c−1(Γ) is a Kleinian
group containing {±1}.

In [3], Proposition 2.1, the isomorphism c(·) is calculated in terms of coor-
dinates, namely the standard coordinates on SL2(C), and the coordinates on
G induced by the basis β. Via some lengthy but not difficult calculations,
the coordinatized version of c(·) can be used to obtain a completely explicit
description of the matrices in c−1(Γ). In order to give this description, we
introduce the following notation. Set

• ω8 =
√

2
2

(1 + i), a primitive eighth root of unity that we can fix for definite-
ness.

• Ξ = {γ ∈ SL2(Z[i]) | γ2 = I2 mod (1 + i)}.

• η =

1 −1

1 0

.

• αN(m,x) =

m x

0 N
m

, for m,x,N ∈ Z[i] such that m|N .
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Note that the element η lies in the complement of Ξ in SL2(Z[i]), so that, in
particular, Ξη is a nonidentity Ξ-coset in SL2(Z[i]). Note also that while α
is a matrix with integral entries (and even an upper-triangular one), α has
determinant N . Unless N is a unit, there is no natural way to view α itself as
an element of a group in our setup. In practice, α will appear in our results
multiplied by a factor, such that the determinant of the product, as a whole,
is a unit.

Proposition 27 With Γ = SO3(Z[i]) as above, c the conjugation map as in
Proposition 26, we have the following explicit description of the inverse image
c−1(Γ) as a Kleinian group containing {±1},

c−1(Γ) =
⋃
δ=0,1

Ξ

(
1

ωδ8
αiδ(iδ, 0)

)⋃ ⋃
ε=0,1

Ξη

(
1

ωδ8(1 + i)
α2i1+δ

(i1+δ, iε)

) ,
with all sets in the above union disjoint.

We restate Proposition 27 in a form better adapted for the application of
Corollary 25.

• The intersection c−1(Γ) ∩ SL2(Z[i]) is equal to Ξ.
• The group Ξ has index 6 in the group c−1(Γ) and has index 3 in the group

SL2(Z[i]).
• For a complete set of (right) coset representatives for Ξ in c−1(Γ), we may

take  I2,
1
ω8
αi(i, 0), 1

1+i
ηα2i(i, 1),

1
1+i
ηα2i(i, i), 1

ω8(1+i)
ηα−2(−1, 1), 1

ω8(1+i)
ηα−2(−1, i)

 ,
while a complete set of coset representatives for Ξ in SL2(Z[i]) isI2, η,

1 1

0 1


 (35)

Given any finite dimensional unitary representation (ψ, V ) of Ξ, we may use
the explicit list of coset representatives in concert with (4)–(5) to compute, ex-
plicity, models for the induced representations (π, V 3) on SL2(Z[i]) and (ρ, V 6)
on c−1(Γ). Then, by Corollary 25 we have

d logZc−1(Γ),(ρ,V 6) = d logZSL2(Z[i]),(π,V 3).

By Proposition 27, we may take the preceding relation as a definition of the
left-hand side (i.e., d logZc−1(Γ),(ρ,V 6)). Further, since SL2(Z[i]) has precisely
one cusp, at ∞, and the index of the unipotent stabilizer of ∞ in the stabilizer
is 2, the results of Friedman surveyed just before Corollary 25 imply that
the residues of the right-hand side (outside the range of convergence) are

34



integral, so that the equality of logarithmic derivatives leads to an equality of
meromorphic functions, which we codify as follows.

Definition 28 Let Γ = SO3(Z[i]), and let the rest of the notation in this

section be as above. Let π = Ind
SL2(Z[i])
Ξ ψ, and ρ = Ind

c−1(Γ)
Ξ ψ, with ρ considered

as a representation of Γ via the isomorphism c(·). Then, in accordance with
the Artin formalism as described in this section, we define the meromorphic
function ZΓ,ρ by

ZΓ,ρ := ZSL2(Z[i]),π.

Further, defining the Fuchsian groups

ΓZ := SO(2, 1)Z = Γ ∩GL3(R),

and
ΞZ = Ξ ∩ SL2(R),

as the corresponding discrete subgroups of the ‘split’ real forms, we can carry
out a similar, but somewhat simpler, sort of analysis to that concerning the
pair (Ξ,Γ). Then it turns out that (summarizing Propositions 5.5 and Lemma
5.6 of [3]),

• The intersection c−1(ΓZ) ∩ SL2(Z) = ΞZ.
• The indices of ΞZ in c−1(ΓZ) and SL2(Z) are 2 and 3, respectively.
• A representative of the unique non-identity right coset of ΞZ in c−1(Γ) is

given by 1√
2
( 1 −1

1 1 ).

In parallel with Definition 28, we may define, in accordance with the Artin
formalism for Fuchsian groups,

ZΓZ,ρ := ZSL2(Z),π, (36)

where ρ and π are the representations induced from a finite-dimensional uni-
tary representation ψ on ΞZ.

Owing to the normality of ΞZ in ΓZ and the particularly simple description of
the representations of the finite abelian quotient groups we obtain

Z2
∼= (ΞZ\ΓZ)∗ = {1, sgn},

where sgn denotes the sign representation of Z2 considered as a one-dimensional
representation of ΓZ trivial on ΞZ. Thus, taking the special case of (36) when
ψ = 1, the trivial one-dimensional representation of ΞZ, we obtain the cute
formula

ZΓ · ZΓ,sgn = ZSL2,IndΞ1. (37)

In (37), in order to improve readability, we have omitted the subscript Z,
throughout, and used the obvious identification of ZΓ,1 with Selberg’s original
‘scalar’ zeta function.
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8 Comments on higher dimensions

Since the group SO(2, 1) is the smallest in an infinite sequence of real Lie
groups of rank one, but increasing dimension, namely the hyperbolic isome-
try groups SO(n, 1), consideration of the example of §7 naturally leads to the
question of whether an analogue of the Artin formalism for Selberg zeta func-
tions for arbitrary lattices in higher-dimension and higher-rank Lie groups.
Thus far, we do not have any results in this direction, but we conclude the
main text of this paper with an informal survey of the subject of Selberg zeta
functions for groups other than SL2 as it currently exists, with comments on
where the Artin formalism should fit into the overall picture.

For all groups of rank 1, the Artin Formalism should be within reach, thanks to
the extensive work of [10] and [11] on the Selberg zeta function in the general
rank one case, based on their earlier extensive work on the trace formula.
Indeed, in [10], Gangolli defines a zeta function of Selberg type, along the
same lines as in this article, for arbitrary G of rank one and finite-dimensional
representation χ, but only for co-compact lattice Γ. Gangolli undertakes a
deep study of the locations and orders of the various types of poles and zeros
of this function, and he lists and proves ten properties of ZΓ,χ. The only
reason, it seems, that he does not include the Artin formalism, as an eleventh,
is that in the article, he does not explore the relations within of families of
ZΓ,χ as Γ, varies over the lattices in a fixed Lie group.. It would seem the
proof in this case is exactly the same as that given in this paper, but no
one has even stated the Artin Formalism because the result is principally of
interest in the general cofinite (G/Γ-with-cusps) case. In the general Γ-cofinite
case, Gangolli and Warner, in [11], use an analogous definition for d logZΓ,
but the task of meromorphic continuation of d logZΓ is made considerably
more complicated by the presence of terms in the trace formula analogous to
our Ĩcus and Ince. Apparently not for any essential reason, but just in order
to make the calculations more comprehensible, they restrict themselves to
the χ = 1—i.e., scalar—case. Therefore, in order to even state the Artin
Formalism for the trace formula, or its images, such as d logZΓ,χ, one would
have to generalize the definitions and arguments there to allow for sections
vector bundles associated to finite-dimensional unitary representations. In this
regard, the work of Friedman in [8] in the special case of SL2(C), locally
isomorphic to SO(3, 1), in generalizing the work of [6] to the vector case, is
encouraging. In short, it looks likely that, once the technical hurdle of defining
the Eisenstein kernels corresponding to singular cusps and checking that the
usual spectral expansion and regularization carry through, the inductivity of
the trace formula should follow in exactly the same way as in this paper. The
Artin formalism itself should follow from the analogue of Proposition 19 in
that setting.
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The prospects are not nearly so clear for higher rank groups. Even, say, for a
rank-two group, such as SL3, there is, as yet, no settled definition of a Selberg
zeta function, as a meromorphic function with symmetry relations generalizing
the functional equation. This is in sharp contrast to the situation for (nearly)
all rank-one cases, thanks to the detailed study of [11]. We are aware of re-
cent steps, as yet unpublished, towards a general theory of zeta functions of
Selberg type by Jorgenson-Lang and, separately, by Stanton-Moscovici. The
main difficulty in generalizing the theory, at this point, seems to be the lack
of a sufficiently clear picture of the geometric side of the trace formula asso-
ciated to a discrete subgroup Γ of a real Lie group G. (Contrast this to the
extremely well developed theory of the adelic trace formula exposed in, e.g.,
[1], and the references contained therein.) It may be hoped that, in the near
future, work on a more refined Selberg trace formula will allow the creation of
a perspective unifying these disparate approaches and defining a zeta function
that deserves to be called the generalization of the Selberg zeta to arithmetic
quotients of higher rank. The naturalness of the argument for inductivity that
we exhibit above argues in favor of including the inductivity property (or ‘Artin
Formalism’) in a list of canonical properties to be expected of this higher-rank
spectral zeta function.

A Proof of Proposition 5

We deduce Proposition 5 from the somewhat more general Proposition 29.
This proposition is stated stated in more generality than needed, and could
be stated in even more general terms of abstract groups actions on sets. The
present level of generality we will consider is that of Γ′ ⊆ Γ co-finite Kleinian
groups satisfying the finite index condition [Γ : Γ′] = n and acting on P1(C),
the boundary of H3, by fractional linear transformations.

We will denote by

P an arbitrary non-empty set of P1(C). (A.1)

We denote by P(P1(C)) the power set of P1(C), that is, the set of all the
subsets of P1(C). The action of Γ on P1(C) can be interpreted as an action
of Γ on P(P1(C))—obviously very far from transitive! Introducing this action
provides a natural framework for the following notions. For P as in (A.1), set

ΓP = {γ ∈ Γ | γP = P},

i.e., the stabilizer of P in P(P1(C)), as opposed the pointwise stabilizer. Sim-
ilarly, denote by

ΓP the orbit of P in P(P1(C)), under Γ.

37



The same notions apply to Γ′ in place of Γ.

The action of Γ on P(P1(C)) induces an obvious group action of Γ′ on the
orbit ΓP. It is obvious that ΓP (under the action of Γ′ on P(P1(C))) is the
union of Γ′-orbits, indeed, of finitely many, say h ≤ n, Γ′-orbits. With this
action in mind, denote

{Pα}hα=1 a fixed system of representatives for the Γ′-orbits in ΓP. (A.2)

Fixing the {Pα} involves making a choice of orbit representatives, which we
will be assume to have been chosen and fixed once and for all for the remain-
der of this section. Analogous to the stabilizers ΓP of P in Γ, we define the
stabilizers

Γ′Pα
= {γ′ ∈ Γ′ | γ′Pα = Pα}

Next, fix elements σP,α ∈ Γ, for α ranging from 1 to h, such that

σP,αP = Pα.

Our basic proposition, whose proof is very simple, concerns the ability to
choose a set of coset representatives {γi}ni=1 for the coset space Γ′ “compatible”

with the choice of
{
P, {σP,α}hα=1

}
and the properties of such a “compatible”

set.

Proposition 29 With the notation as above, for each α ∈ {1, . . . h}, let βα,j,
j = 1, . . . nα, say, be a system of representatives for the coset space Γ′Pα

\ΓPα,
where nα denotes the index [ΓPα : Γ′Pα

]. Then we have a disjoint decomposition

Γ =
h⋃

α=1

nα⋃
j=1

Γ′βα,jσα.

Consequently, we have the equality

n =
h∑

α=1

nα.

Proof. Let γ ∈ Γ be given. The argument proceeds in two steps. In the first
step, we consider γP. There is a uniquely determined α ∈ {1, . . . , h} such that

γP = σαP = Pα.

Therefore, γ ∈ ΓPασα, which is to say that

There is an η ∈ ΓPα such that γ = ησα.

In the second step, we note that there is a uniquely determined j ∈ {1, . . . , nα}
such that η ∈ Γ′Pα

βα,j.
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Substituting, we see that γ ∈ Γ′Pα
βα,jσα. Since γ was chosen arbitrarily in Γ,

this shows that the union of the cosets Γ′βα,jσα is all of Γ. The uniqueness of
the choice in each of the two steps insures that the cosets are distinct, thus
disjoint. 2

We obtain Proposition 5 and Corollary 6 by specializing Proposition 5 to the
case of P = {a}, where a ∈ P1(C) is a cusp of Γ. Then the Pα are the
b ∈ Ca(Γ

′), i.e., the cusps b of Γ′ such that b|a, and Proposition 5 follows
immediately.

Remark. Corollary 6 gives an alternate and quick proof of the fact that
Cusps(Γ) ⊆ Cusps(Γ′). For, by definition, a ∈ Cusps(Γ) means that ΓUa is free
abelian of rank 2. Then the corollary implies that the index na = [Γa : Γ′a] ≤
n <∞. So Γ′Ua is also free abelian of rank 2, and a is a cusp of Γ′.
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